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1 Level-2 Atmospheric Retrieval

1.1 Introduction

This Algorithm Theoretical Basis Document (ATBD) describes the algorithms
used to produce the 2B-ATM (clear-sky atmosphere) product for the Polar
Radiant Energy in the Far Infrared Experiment (PREFIRE). The 2B-ATM
algorithm uses data from the PREFIRE AUX-MET (Auxiliary Meteorological
analysis), 2B-MSK (Cloud mask), and the 2B-SFC (surface properties) products
as prior information.

1.2 Instrument overview

The spectrometer for PREFIRE, the Thermal Infrared Spectrometer (TIRS, or
TIRS-PREFIRE), collects spectral radiance measurements across a wavelength
range of approximately 5 to 54µm with a spectral sampling of 0.84µm. The
light is dispersed by a grating onto a 64×8 element detector array that mea-
sures 8 simultaneous spectra along the spectrometer slit. The first four channels
respond to shortwave radiance (< 3µm) and are not planned to be part of the
calibrated 1B-RAD dataset, as there will be no calibration system for these
wavelengths and no expectation of instrument performance. Due to the instru-
ment design, there are two-channel gaps at approximately 7, 15, and 30µm,
at the boundaries of the order-sorting filters used to select for specific grating
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diffraction orders. The layout of the filters results in 54 usable channels covering
most of the thermal infrared range. The actual flight detectors have individual
bad detector elements which will imply a different number of valid channels
between the 8 cross-track spectra. While the spectral resolution is much lower
than modern infrared sounders, the spectral information available (particularly
in the far-infrared water vapor rotational absorption band) does allow for coarse
vertical resolution temperature and water vapor profiles.

Due to unpowered flight, the slowly decreasing altitude of the PREFIRE
orbits will result in gradually smaller observational footprints throughout the
mission. The initial ground footprint shapes of the 8 TIRS scenes are quadri-
laterals, approximately 11.8 km x 34.8 km (cross-track by along-track) in size,
with the 8 scenes separated cross-track by 24.2 km gaps between them. The
temporal sampling rate of TIRS (0.7007 s) at the initial orbit altitude results in
an along-track translation of only about 5.3 km, so that more than 6 consecu-
tive measurements overlap. For the baseline 2B-CLD algorithm, no attempt is
made to combine these observations in any way. In other words, each spectrum
is treated as an entirely independent measurement. Future research will inves-
tigate whether the overlapping measurements can be combined in some way to
reduce sensor noise.

Figure 1.1 shows a summary of the spectral response functions (SRFs) com-
pared to a clear-sky, standard atmosphere emission spectrum. The SRFs are
grouped according to the order sorting filter. Note the two channels (n) in the
gaps between each grouping (n = 8, 9, 17, 18, 35, 36). Figure 1.2 shows sample
weighting functions, for a standard atmosphere, across the primary wavelengths
used for the 2B-ATM retrieval.

1.3 Overview

The 2B-ATM algorithm is a physical retrieval implemented with a standard
optimal estimation approach (Rodgers, 2000), with a Levenberg-Marquardt pa-
rameter to adjust the weighting of the a priori and measurement information
during iteration. The state vector consists of the temperature and water va-
por vertical profiles and the surface temperature. The remaining relevant geo-
physical properties are taken from the values in the a priori datasets, and are
assumed to be fixed values. The 2B-ATM algorithm is intended to be run in
clear-sky conditions only (i.e., only on the measurements identified as clear by
the 2B-MSK product).

A priori information is derived from several sources in the PREFIRE SDPS
processing chain and input into the 2B-ATM algorithm, in order to create a
final output data file. The output data file contains the final retrieval state at
the coarse vertical resolution used in the 2B-ATM output product. Figure 1.3
shows the overall data flow.
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Figure 1.1: The TIRS SRFs grouped by the order sorting filter. In each panel,
the upper plot is an emission spectrum from a standard atmosphere for com-
parison.

Figure 1.2: Sample TIRS weighting functions for the standard subarctic winter
atmosphere, for n = 4 – 40.
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Figure 1.3: Algorithm flowchart

1.4 Spectral radiance forward model

The forward model used within the retrieval algorithm is the Principal Components-
based Radiative Transfer Model (PCRTM) V3.4 (Liu et al., 2006). The PCRTM
is an efficient and accurate plane parallel RT model, and uses a set of pre-
computed Principal Components (PCs) describing a specific spectrometer sam-
pling grid. The V3.4 implementation supports user defined profiles for the
six primary infrared active molecules: water vapor, CO2, O3, CH4, CO and
N2O. A number of other trace gases (such as CFCs) are included with fixed
concentration profiles. The PCRTM can compute both the forward modeled
radiance, as well as Jacobians for surface temperature, temperature profile, and
concentration profiles for the six variable absorbers. A standard set of 101 fixed
pressure levels defines the internal leveling grid for the forward model. To cover
the FIR wavelengths measured by TIRS, we use a set of pre-computed coef-
ficients constructed for a theoretical interferometer covering the wavenumber
range 50 – 2760 cm–1 at a 0.5 cm–1 sampling grid. The high spectral resolution
forward-modeled spectra are converted to a wavelength grid and the TIRS chan-
nel Spectral Response Functions (SRF) are applied to generate TIRS channel
radiances.

For the 2B-ATM algorithm, the PCRTM is operated in a clear-sky mode,
though the PCRTM does contain ice and water cloud spectral emissivity models.
This version of the PCRTM does not include capability to model the spectral
reflectance, so the output will include only the thermal emission.
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1.5 State and measurement vectors

The retrieved state vector for the 2B-ATM algorithm includes the temperature
profile, T, the logarithm of the water vapor mass mixing ratio profile, ln(Q),
and the surface temperature Ts, combined into a single joint as follows:

x = [T; ln(Q);Ts] (1.1)

The profile variables are defined in the full PCRTM vertical level resolution, but
for only the levels, j, with pressures less than the surface pressure as defined by
the PREFIRE AUX-MET product (in other words, only the levels above the sur-
face topography are retrieved). This implies that the typical number of retrieved
levels will be slightly less than 101, or as few as 80 for very high-altitude surface
topography. The below-surface levels are set to copies of the lowest-altitude air
temperature and water vapor mixing ratio. The below-surface values are input
to PCRTM for the forward radiance calculation, but they are not included in
the state vector – meaning that the values do not change during optimization.
(Note that the first below-surface level helps define the temperature and gas
concentration of the partial layer containing the surface, so the below-surface
values do impact the modeled radiance).

The measurement vector is the measured spectral radiance, as described in
1.2, and TIRS spectra will contain 54 valid spectral channels, less any identified
bad detector elements. The shortest wavelength channels are not planned to be
used in the 2B-ATM algorithm, in order to limit the impact of scattered solar
radiation on the algorithm and limit any day/night biases that would arise.
Our forward model (PCRTM v3.4) does not model the spectral reflectance,
so these channels at the short wavelength end would require significant extra
modeling efforts to be utilized in the algorithm. In addition, the information
content for water vapor and temperature profiling of these channels is a small
fraction of the total, so removing these channels from the retrieval does not
cause a significant performance degradation. If the detector at n = 6 is not
flagged as poor quality, then we will we pay close attention to its behavior in
the flight data as this channel would be sensitive to both scattered solar radiation
and non-Local Thermodynamic Equilibrium (non-LTE) emission in the 4.3µm
CO2 absorption band (DeSouza-Machado et al. 2007). In addition, the longest
wavelength channels (wavelengths larger than 40µm) have relatively low signal
to noise, and it may be necessary to remove several of these channels depending
on their behavior in flight.

1.6 A priori data

The OE algorithm requires a priori covariance matrices and mean values de-
scribing the expected probability distribution of the state vector before the
measurement is examined. Since our a priori is derived from auxiliary meteo-
rological analysis data (the PREFIRE AUX-MET data product), the a priori
mean will be direct copies of analysis fields interpolated to the TIRS observation
locations and times. The covariance should then represent our expectation of
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the probability distribution errors in the meteorological analysis fields relative
to the true values. This error distribution should include error in the analysis
field itself, as well as error incurred from the interpolation of the analysis grid
and time to the actual observation location and time. In practice, this covari-
ance is very difficult to accurately estimate. As an empirical approximation, we
can compute distributions of analysis errors from comparing an analysis time
step to the average of the bracketing time steps. For example, we can compare
the field at 12 UTC to the average of the fields at 09 UTC and 15 UTC (a ±
3-hour interpolation), or 06 and 18 UTC (a ± 6-hour interpolation). The aver-
aged field is a proxy for the interpolation that will be done between a set of two
analysis time steps and the arbitrary TIRS measurement time. This procedure
should capture that part of the interpolation error, although it will not include
any spatial interpolation. The covariance of these differences should capture
realistic vertical error correlations, assuming the atmospheric transport within
the analysis data is realistic. However, since this is not comparing the analysis
data to an actual independent “truth” dataset, this method is likely to be an
underestimate of the true error.

The PREFIRE SDPS will initially produce AUX-MET products from the
GEOS-IT analysis data stream from NASA GMAO (Lucchesi, 2015) which will
be available during the PREFIRE mission. To compute our initial covariance
matrices, we used the above procedure on GEOS5 FP-IT data, which was avail-
able during algorithm development, before GEOS-IT was available. This data
source has a time step of 3 hours for the three-dimensional variables (the tem-
perature and water vapor fields), so in practice the interpolation time window
would be a maximum of ± 1.5 hours to the arbitrary TIRS measurement times.
We chose to use the interpolation from the ± 6 hour interpolation window as
a way to compute a conservative estimate of the a priori covariance. In other
words, this procedure will generate larger covariances in order to capture some
of the known additional error sources that are not captured by the method.
Finally, we approximate the computed covariances with an autoregressive cor-
relation model (Lerner et al. 2003). This covariance model uses an exponential
correlation model, so the covariance between two levels i and j, with variances
σ2
i and σ2

j , pressures pi and pj and a correlation scale pL is given by (following
Lerner et al. 2003, equation 7):

Sa(i, j) = σiσj exp[−|pi − pj |/pL] (1.2)

Because the information content of TIRS observations is very low for the upper
atmosphere (p < 100 hPa), we use a correlation scale length in pressure coordi-
nates that enforces a high degree of correlation among these upper atmosphere
levels. Different values are used for the correlation scales and variance in the
lower and upper atmosphere, and a logistic function smooths the transition be-
tween the two regimes. Table 1.1 gives the values of variances and correlation
scales in the upper and lower atmosphere used in the analytic covariance model.
Figure 1.4 shows the shape of the correlation structure and variance for the tem-
perature a priori matrix. The correlation matrix for ln(Q), is the same, and no
correlation is assumed between temperature and water vapor.
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Parameter Upper atmosphere Lower atmosphere
Surface T variance (2.0 K)2

T variance (0.5 K)2 (2.0 K)2

ln(Q) variance (0.3)2 (0.6)2

T correlation scale 50 hPa 100 hPa
ln(Q) correlation scale 50 hPa 100 hPa

Table 1.1: Parameters defining the a priori covariance matrices for temperature
and water vapor.

Figure 1.4: A priori temperature correlation and variance used in the retrieval.
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In addition to the temperature and water vapor profiles that are present in
the retrieval state vector, there are many additional geophysical variables that
can impact the modeled radiance. These other variables have low information
content in the TIRS measurements, and so cannot be retrieved, but should be
specified accurately to minimize modeling errors. All of these additional vari-
ables are not included in the state vector, so their values will be fixed during
optimization. These include the surface spectral emissivity and profiles of other
infrared active molecules (CO2, O3, CH4, CO, and N2O). The surface spectral
emissivity will be taken from the initial 2B-SFC retrieval. For CO and N2O, the
fixed profile from the standard atmosphere is assumed for all observations. Since
the O3 profile has strong vertical and temporal variation, it will be taken from
the AUX-MET product, after passing through the same temporal and spatial
interpolation as the temperature and water vapor profiles. For CO2 and CH4, a
fixed volume mixing ratio profile is used, based on a climatology developed from
the Copernicus Atmospheric Modeling System (CAMS) EGG4 greenhouse gas
reanalysis product (Agust́ı-Pareneda et al., 2022). The climatology models the
EGG4 XCO2 and XCH4 (the total column-averaged dry air mole fractions) as
a function of latitude and time. To compute the climatology, the daily EGG4
data from 2003 - 2020 was first averaged across longitudes to produce zonal
averages with time. The zonal averaged time series were then fit with harmonic
series (sin + cos) and polynomial functions of time. These coefficients were then
smoothed across latitudes with splines in order to reduce the overall dimension-
ality of climatology fits and to reduce noise across the individual latitude bands.
Both CO2 and CH4 use linear polynomials. The CO2 harmonic fit uses three
terms, to fit annual and sub-annual cycles, while the CH4 harmonic fit only
uses one term. For each TIRS observation, the spline fits are evaluated at the
observation latitude in order to determine the harmonic and polynomial coeffi-
cients, which are then evaluated to determine the CO2 and CH4 prior values.
For an example with CO2, assuming the spline fits yield the linear polynomial
coefficients c0, c1 and the harmonic coefficients an, bn, then the a priori CO2

will be:

CO2 = c0 + c1t+

3∑
n=1

(an sin(nt) + bn cos(nt)) (1.3)

The evaluation for the CH4 a priori value proceeds in a similar fashion,
using fewer harmonic terms.

1.7 Inversion method

The inversion method used in the 2B-ATM algorithm is a standard Bayesian
non-linear optimal estimation (OE) approach. Starting from an initial guess, the
algorithm iterates the state vector, x value, recomputing the forward modeled
spectral radiance and Jacobians at each step. The state vector updates at each
iteration are the standard linear cost-function minimization steps. The method
is similar to the standard Newton’s method, with an additional Levenberg-
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Marquardt parameter to adjust the weighting of the a priori and measurement
information during iteration (Rodgers 2000). This implementation closely fol-
lows the OE solver method used in the NASA OCO-2 L2 algorithm (Crisp et
al., 2021).

The cost function is from the standard OE formalism, following from an
assumed a priori state vector mean (xa) and covariance (Sa), a measurement
vector (y) and measurement error covariance (Sε), and a forward model function
(F). For a particular iteration where the state vector value is xi, the cost
function (c) is given by:

c = (y −F(xi))
TSε

−1(y −F(xi)) + (xi − xa)TSa
−1(xi − xa) (1.4)

At each iteration, the forward model returns the modeled measurement (F(xi))
as well as the Jacobian at the state vector value (Ki). These are used to compute
the state update, dxi+1. The actual state update is computed using a linear
matrix solver (the linalg.solve function in NumPy, which utilizes LAPACK).
The state update equation is given by:

[(1+γ)Sa
−1+Ki

TSε
−1Ki]dxi+1 = [Ki

TSε
−1(y−F(xi))+Sa

−1(xi−xa)] (1.5)

These quantities are computed for a scaled state vector, using the matrix
M which contains the inverse square root of the diagonal of Sa along the diag-
onal. Multiplying by M scales the vector by dividing by the per-state variable
standard deviation contained in the Sa matrix. This yields a slightly different
form of equation 1.5, operating in the scaled state vector space:

M =

Sa,(1,1) 0 0
0 . . . 0
0 0 Sa,(k,k)

1/2

(1.6)

S̃a =M−1SaM−1 (1.7)

x̃ =M−1x (1.8)

[(1+γ)S̃−1a +MKi
TSε

−1KiM]dx̃i+1 = [MKi
TSε

−1(y−F(xi))+ S̃−1a (x̃a− x̃i)]
(1.9)

After each iteration, the linearity of the forward model and cost function
are assessed by comparing the value of the cost function after the state update
(ci+1) with a forecasted value of the cost function, assuming linearity, from the
previous state value. The forecast value of the cost function relies on linear
prediction of y at the current state:

F(xi+1) ≈ F(xi) + Kidxi+1 (1.10)
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The cost function forecast, cFC is computed from equation 1.4, using equa-
tion 1.10 for F(xi+1) and xi+1 ≈ xi +dxi+1. The ratio between the actual cost
function change and the forecast cost function change, R, is calculated as:

R =
(ci − ci+1)

(ci − cFC,i+1)
(1.11)

For a well-behaved update, the cost function at iteration i+1 should be
smaller than i, and if it is linear then it should be close to the value of the
forecast. In this case the ratio R should be close to 1. On the other extreme,
for poorly-behaved updates, the cost function value may not change (R = 0)
or may even increase after the update (R < 0). Given these limiting values for
R, we assign one of four labels for the state update: divergent updates (R <
0.0001), moderately nonlinear updates (0.0001 < R < 0.25), weakly nonlinear
(0.25 < R < 0.75), or linear updates (R > 0.75). During iteration, a divergent
update triggers a change to the Levenberg-Marquardt parameter (λ0; see below),
and the state update is discarded and recomputed with a new value of the λ0
parameter. All other update types (R > 0.0001) will update the state vector
using dxi+1.

The Levenberg-Marquardt λ0 parameter controls a relative weighting be-
tween the a priori state estimate and the measurement. We start with a value
of 10, and then update it during iteration with the following criteria, based on
the classification of the state update by the cost function prediction method
described above: For divergent updates or moderately nonlinear updates, λ0
is increased by a factor of 10; for weakly nonlinear updates, λ0 is unchanged,
and finally, for linear updates, λ0 is reduced by a factor of 2. The iteration is
stopped when one of three exit criteria is reached: 1) the maximum number
of iterations was reached, 2) the maximum number of divergent updates was
reached, or 3) the state update was smaller than a threshold value. Retrievals
that stop iteration by the third criterion are considered converged. The third
criterion is evaluated by computing the size of the squared scaled state vector
update relative to the current posterior error covariance, divided by the number
of state vector elements. This quantity (z) is compared against a threshold value
of 0.1 to determine convergence:

z =
1

k
dx̃T

i+1S̃−1dx̃i+1 (1.12)

Each one of the criteria is set by an adjustable parameter that will be con-
tinually re-evaluated. Each of the thresholds can represent tradeoffs between
algorithm throughput, yield, and accuracy, that will not be fully characterizable
with pre-flight simulation testing. For example, more retrievals will converge
if the iteration limit is increased, or higher accuracy might be obtained with
smaller state update thresholds.

Finally, when the iterative algorithm stops, we perform a final forward model
calculation to get the value of F(x′) at the retrieved state for the purposes of
a χ2 calculation to evaluate the goodness of fit and to compute the spectral
residuals. The χ2 is computed in the conventional way, given by equation 1.13.
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The number of degrees of freedom are taken from the trace of the averaging
kernel matrix, A, at the final state vector value. This allows for the calculation
of the reduced χ2, which is expected to be near a value of 1 for a successful
retrieval. In the following equation, k is the number of variables in the state
vector, and d is the number of degrees of freedom in the retrieval.

χ2
ν =

(y −F(x̃))Sε
−1(y −F(x̃))

k − d
(1.13)

While the actual measurement vector used in the retrieval will be a subset
of the total TIRS channels, the final forward model calculation will produce
modeled radiances for all 54 valid channels. The full spectral model will be
used for quality assessment as described in the section below.

1.8 Output processing

1.8.1 Layer specification of output profiles

Because the information content of the TIRS measurement is relatively low, the
full vertical resolution profiles (the PCRTM standard 101 levels) are far more
densely spaced than what is needed to capture the actual information content.
This is particularly true in the upper atmosphere levels, where the full resolution
includes 44 levels below 100 hPa. Before creating the final output product,
the full resolution levels are grouped and combined into a smaller number of
layers. A general heuristic is used to determine an appropriate grouping of the
high vertical resolution levels based on the information content profile at the
high vertical resolution. Starting from the TOA level, the information content
profile is integrated downwards (with a cumulative sum), stopping when the
total information reaches some threshold level. The threshold level should be
less than one, otherwise the information content total would suggest the retrieval
would have enough degrees of freedom for signal to retrieve partially independent
sub-layers within the layer. Once the threshold level is surpassed, the level
defines the bottom level that will be used in the combined layer. The process
is repeated with the current level as the top level of the next combined layer.

The level combination process produces different level groupings for each
individual profile. In particular, the process would produce a smaller number of
combined layers for low information content profiles (high surface altitude, dry
conditions). We desired a single layer specification that is applicable globally.
Therefore, we determined the layer specification from an ensemble of tropical
ocean profiles from ERA5 reanalysis data, as these will tend to have the highest
total information content, and we determined a single set that is approximately
the number returned from the average temperature profile. For simplicity, the
same layer specification is applied to both the temperature and water vapor
profile.

When the high-resolution profiles are combined, each low vertical resolution
layer value is the mean of the associated high-resolution grouping. The posterior
covariance matrix is computed by block averaging according to the same layer

12



Combined layer PCRTM level Pressure range Pressure thickness
number number range (hPa) (hPa)

1 1 – 51 0.005 – 156 156
2 52 – 64 156 – 307 151
3 65 – 72 307 – 433 126
4 73 – 79 433 – 565 132
5 80 – 86 565 – 718 153
6 87 – 93 718 – 892 174
7 94 – 101 892 – 1100 208

Table 1.2: Specification of the combined layers for the output product.

specification. The layer specification is shown in Table 1.2. The pressure bound-
aries of the coarse output levels are specified as the half-levels between the lower
and upper pressure levels of the neighboring combined layers. Note that nearly
the entire upper atmosphere (p < 150 hPa) is combined into one coarse output
layer. The troposphere is then divided into six layers with pressure thicknesses
ranging from approximately 120 – 170 hPa.

1.8.2 Quality assessment variables

The optimal estimation algorithm outputs several status variables that are used
for quality assessment. These are combined into two quality variables. First, a
summary integer flag (atm quality flag) with categorical values is provided. A
second bit flag variable (atm qc bitflags) that includes more detailed status
information is included in the product. The summary integer flag should be
sufficient for most uses, with the additional detail in the bit flags available
for more advanced analysis of the product. The details of the flags will likely
change with on-orbit data, but the intention is for the summary integer flag to
retain the same definition, while the bit flags will likely include additional status
conditions as needed.

The summary integer flag records the four main status conditions for the
2B-ATM algorithm within each TIRS observation. In brief, these are that no
retrieval was attempted, or that a retrieval was attempted resulting in one of
three outcomes: a good-quality converged retrieval, a poorer-quality converged
retrieval, or an unconverged retrieval. These are listed in table 1.3 with the
corresponding integer values. The bit flags give more detail about the iteration
convergence, which can fail because either the diverging step or iteration count
limits were reached, or an unphysical state vector value was reached during
iteration. Additional status bits may be added once on-orbit data is analyzed.
Table 1.4 describes the current set of bit flags within the algorithm.

Threshold values for these QA variables are still under assessment using sim-
ulated data, and they will be re-evaluated as further refinements of the preflight
noise models from TIRS become available. Ultimately, the thresholds will be
reassessed again when flight data becomes available.
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status value Description
0 Best quality, converged retrieval
1 Poor quality, converged retrieval

(reduced χ2 exceeds threshold)
2 Retrieval did not converge

Table 1.3: Description of 2B-ATM integer quality flag.

bit number Status description
0 reduced χ2 threshold exceeded
1 retrieval exceeded iteration count limit
2 retrieval exceeded diverging step count limit
3 retrieval went outside allowable state vector range
4 retrieval solver crashed
5 retrieval used constant surface emissivity
10 retrieval not attempted due to cloud mask
11 retrieval not attempted due to latitude constraint
12 retrieval not attempted due to 1B-RAD status

Table 1.4: Descriptions of 2B-ATM quality bit flags.

As described in the earlier section, when the retrieval is performed, the for-
ward model is used to create a full spectral model even if a subset of the channels
was used in the retrieval. If there are detector elements that have unexpected
behavior on orbit, the modeled radiance may allow for assessment of the ra-
diometric response relative to the “good” detector elements. For example, a
problematic channel could be evaluated by excluding it from the retrieval and
analyzing the residuals (modeled minus observed radiance) in the retrieval out-
put. These spectral residuals will be continually monitored during the mission.
Furthermore, bulk statistics based on the fraction of converged retrievals and
the averaged reduced χ2 will be used to assess overall retrieval product qual-
ity. These values will be visualized separately for the eight TIRS spectra per
instrument. Differences between the average performance among the eight spec-
tra (for example, the distribution of χ2 values) can indicate problems with the
1B-RAD calibration.

1.9 Retrieval analysis: information content and uncer-
tainty characterization

Tests were performed with simulated measurements in order to assess the per-
formance and uncertainties computed by the retrieval algorithm. The simulated
measurements were generated from radiance simulations using the same forward
model used in the retrieval (PCRTM, as described earlier), based on atmospheric
profiles from ERA5 reanalysis data (Hersbach et al. 2020) produced by the Eu-
ropean Centre for Medium-range Weather Forecasts. The region locations reflect

14



‘

Figure 1.5: Regions where profile ensembles were extracted from ERA5 reanal-
ysis data: Upper left, Arctic ocean (70oN – 80oN, 5oW – 5oE); upper right,
tropical ocean (5oS – 5oN, 160oW – 170oE); lower left, Greenland ice sheet
(70oN – 80oN, 45oW – 35oE); Antarctica (80oS – 85oS). Images are from NASA
Worldview.

that PREFIRE is a polar-focused mission but will also produce global products.
Three of the regions are polar (Arctic ocean, Greenland ice sheet, Antarctica)
and the fourth region is near the warm pool in the tropical Pacific Ocean. The
full set of profiles thus spans a wide range of polar climate conditions, and also
spans the range of cold/dry and warm/moist extremes we expect to observe
globally. Figure 1.5 shows the locations of the four regions. For each region, we
drew 8000 random samples from 2016 to yield a testing ensemble. Each profile
produces a simulated radiance and Jacobian from PCRTM, which is then pro-
cessed through the standard “Degrees of Freedom for Signal” (DFS) analysis
(Rodgers, 2000) to assess the information content of the temperature and water
vapor profiles. The TIRS information content is very strongly modified by the
total water vapor amount, since the temperature information is relatively low
because of the masked channels at 15µm. Figure 1.6 shows a joint histogram of
the DFS and total column water vapor (CWV) across the entire 32000 profile
ensemble.
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(a) Linear x-scale for CWV. (b) Logarithmic x-scale for CWV.

Figure 1.6: Joint and marginal histograms of retrieval DFS (for temperature and
water vapor profiles) versus a linear or logarithmic scaled total column water
vapor (CWV). The data from the three polar regions populates a similar region
in these two parameters, with the tropical data separated to larger values in
both DFS and PWV.

The profiles are used to directly generate simulated observations with repre-
sentative sensor noise, but then the retrieval is run with a perturbed profile as
the first guess in conjunction with these simulated observations. The perturba-
tion is created as a correlated random variable, drawn from a covariance nearly
equal to the prior. The same correlation structure is used, but the variance
is constant with height rather than decreasing to a lower value in the upper
atmosphere.

The retrieval is run on all selected profiles, and the statistics are pooled
within each regional ensemble. The difference between retrieved and true profiles
is characterized in terms of the precision (standard deviation of the differences)
and accuracy or bias (mean of the differences). Furthermore, we examine the
accuracy of the retrieval algorithm’s reported uncertainty by computing the
standard deviation of the scaled differences (z):

z = (x̂− xtrue)/εx (1.14)

where the uncertainty (εx) is the posterior value computed by the retrieval
algorithm. With accurate uncertainties, this quantity should be a normally
distributed value with unit variance, meaning the standard deviation should
converge to 1.

Figure 1.7 shows the results for the temperature profiles from the Arctic
ocean ensemble. The results from the other three regional ensembles are similar
and omitted for brevity. The results are generally within expectations. In gen-
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Figure 1.7: Evaluation statistics for temperature for the Arctic ocean ensemble:
(a) retrieval precision estimate, from the standard deviation of retrieval – truth
differences; (b) retrieval accuracy estimate, from the mean of the differences;
(c) accuracy of uncertainties, from the standard deviation of the scaled uncer-
tainties. The original 101-level and combined 7-layer profiles are shown, with
the surface temperature displayed as the separated single point at p=1050 hPa.

eral, within the troposphere the reduction in uncertainty relative to the prior in
the full set of retrieval levels ranges from 0.1 to 0.4 K. The level combining does
increase the precision slightly. For example, the standard deviation in Figure
1.7(a) drops from about 1.8 to 1.5 K, due to averaging out of uncorrelated error
among the combined levels. The biases (middle column) are small, generally
0.1 K or less, with the larger biases generally occurring near the surface. Note
that the scaled uncertainty is very close to 1 for the original and combined
levels throughout the troposphere, demonstrating that the post-processing cal-
culations are handling the uncertainty propagation accurately through the level
combining process. The scaled uncertainty increases to larger values in the up-
per atmosphere, here due to the perturbations being larger than the a priori
assumptions. The measurements also have very little information about the up-
per atmosphere levels (note in 1.7(a) that the standard deviation does not drop
from the perturbation amplitude of 2 K), so the retrieved state is very close to
the prior.

Figure 1.8 shows the results for the water vapor profiles, displayed in a
similar way as the temperature results in Figure 1.7. Since the water vapor
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Figure 1.8: Water vapor evaluation statistics. Similar to Figure 1.7 (for tem-
perature) but using the retrieval statistics in ln(Q) space. The separated point
at p=1050 hPa is the results for the CWV.

profile retrieval is done in ln(Q) space, the accuracy and precision estimates
are also shown in the ln(Q) space. The transformation back to linear space
will introduce a bias itself, so it is important to isolate any possible bias from
the retrieval itself. Displaying the results in ln(Q) space also makes it easy to
relate to the variance of the a priori. The results for water vapor are largely the
same as temperature, and there is again good consistency between the regional
ensembles.

The primary output variable for the retrieval is the column water vapor
(CWV). The CWV is simply the vertical integral of the water vapor profile, but
it is important to ensure the uncertainty propagation through the integration
is accurate. In Figure 1.8(c), the scaled uncertainties for the CWV computed
from the original 101-level profile are slightly high, but after level combination
the CWV integral uncertainty is very accurate. Table 1.5 lists the final CWV
uncertainties observed across the four regional ensembles and gives a rough
estimate of the overall uncertainty of global CWV estimates from the 2B-ATM
retrieval.
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Antarctica Greenland Arctic ocean Tropical ocean
Mean CWV [cm] 0.111 0.201 0.880 4.92
Standard dev. [cm] 0.056 0.082 0.327 0.89
Fractional uncertainty 51% 41% 37% 18%
(Std. dev./mean)

Table 1.5: Uncertainty estimates of column water vapor from the ATM retrieval.

1.10 Validation plan

Comparisons of ground-based and airborne measurements to PREFIRE wa-
ter vapor level 2 products provide an independent gauge of the accuracy of
the retrievals. Validation sources are critical to verifying the retrieved values
are within the reported uncertainty. Ground-based stations, situated in the
Arctic and Antarctica, have a lot of variation of data availability and mea-
surement types. Direct measurements of the temperature and humidity pro-
files throughout the troposphere via radiosondes are extremely valuable, but
usually occur only once or twice a day at a given station. Sub-setting PRE-
FIRE overpasses with station locations and known launch times throughout
the mission provides a repository of data useful for statistical analysis. We
will utilize the Integrated Global Radiosonde Archive (IGRA) v2 (Durre et
al. 2006) which includes a consolidated distribution of radiosonde observations
(ftp://ftp.ncdc.noaa.gov/pub/data/igra). Stations in Antarctica and the Arctic
are most pertinent for the validation of PREFIRE products. In Antarctica, a
majority of active stations in the IGRA are located along the coast as seen in
Figure 1.9. The 14 stations labeled in Figure 1.9 will be used during clear-sky
scenes to compare retrieved specific humidity profiles to direct measurements
from radiosondes. In addition, column water vapor (CWV) estimates will be
compared to the integrated water vapor from the radiosondes. The station lo-
cated at the South Pole is not included as that latitude falls outside of the orbital
range of PREFIRE. Specific station data usage is subject to data quality-control
tests and availability over the mission period.

In the Arctic, there are 63 currently active stations in the IGRA that av-
erage one or more radiosonde launches per day and are north of 60oN (Figure
1.10). Similar analysis to the Antarctic sites will be performed by comparing the
Northern hemisphere sites to the subsampled PREFIRE data. In addition, the
three sites labeled in Figure 1.10 have instruments designed to measure addi-
tional atmospheric state information, including high temporal resolution PWV
estimates from microwave radiometers and various cloud properties. Specific
station data usage is subject to data quality control tests and availability over
the mission period.

The Simultaneous Nadir Overpass (SNO) method allows for comparison be-
tween PREFIRE and other polar-orbiting satellites (e.g., Cao et al. 2005) when
the two similar nadir overpasses occur within small time difference. The Cross-
track Infrared Sounder (CrIS) and Infrared Atmospheric Sounding Interferome-
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Figure 1.9: IGRA station locations around Antarctica.
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Figure 1.10: IGRA station locations around the Arctic Ocean.
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ter (IASI) derived products provide the ability to directly compare water vapor
retrievals via SNOs. These comparisons of similar Earth scenes may bring to
light potential calibration issues, possible biases in water vapor retrievals, or
scene-dependent discrepancies.
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Agust́ı-Panareda, A., Barré, J., Massart, S., Inness, A., Aben, I., et al.: Tech-
nical note: The CAMS greenhouse gas reanalysis from 2003 to 2020, Atmos.
Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023,
2023.

Cao, C., C., H. Xu, J. Sullivan, L. Mcmillin, P. Ciren, and Y. Hou, 2005: In-
tersatellite radiance biases for the High Resolution Infrared Radiation Sounders
(HIRS) on-board NOAA-15, -16, and -17 from simultaneous nadir observations.
J. Atmos. and Ocn. Tech., 22, 381-395.

Crisp, D., O’Dell, C., Eldering, A., Fisher, B., Oyafuso, F., et al., 2021. OCO
(Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm The-
oretical Basis, Tech. Rep. OCO D-55207, NASA Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, Version 3.0 - Rev 1, available
at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_
L2_ATBD.pdf (last access: Jun 4 2021),

Copernicus Atmosphere Monitoring Service: CAMS global greenhouse gas re-
analysis (EGG4), CAMS Atmosphere Data Store (ADS) [data set], https:

//doi.org/10.24380/8fck-9w87, 2021.

DeSouza-Machado, S.G., Strow, L.L., Hannon, S.E., Motteler, H.E., Lopez-
Puertas, M., Funke, B., Edwards, D.P., 2007. Fast forward radiative transfer
modeling of 4.3 um nonlocal thermodynamic equilibrium effects for infrared
temperature sounders. Geophys. Res. Lett. 34.

Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated
Global Radiosonde Archive. Journal of Climate, 19, 53-68.

GMAO website, last accessed 2022-06-24.https://gmao.gsfc.nasa.gov/GMAO_
products/GEOS-IT/

Hersbach, H, Bell, B, Berrisford, P, et al. The ERA5 global reanalysis. Q
J R Meteorol Soc. 2020; 146: 1999– 2049. https://doi.org/10.1002/qj.3803

Liu, X., Smith, W.L., Zhou, D.K., Larar, A., 2006. Principal component-based
radiative transfer model for hyperspectral sensors: theoretical concept. Appl.
Opt. 45, 201–209.

22

https://doi.org/10.5194/acp-23-3829-2023
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L2_ATBD.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L2_ATBD.pdf
https://doi.org/10.24380/8fck-9w87
https://doi.org/10.24380/8fck-9w87
https://gmao.gsfc.nasa.gov/GMAO_products/GEOS-IT/
https://gmao.gsfc.nasa.gov/GMAO_products/GEOS-IT/
https://doi.org/10.1002/qj.3803


Lerner, J.A., Weisz, E., Kirchengast, G., 2002. Temperature and humidity
retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI)
measurements. J. Geophys. Res. 107, 4189. https://doi.org/10.1029/

2001JD900254

Lucchesi, R., 2015: File Specification for GEOS-5 FP-IT. GMAO Office Note
No. 2 (Version 1.4), 60 pp, available from http://gmao.gsfc.nasa.gov/pubs/

office_notes .

Rodgers, C. (2000) Inverse Methods for Atmospheric Sounding: Theory and
Practice. World Scientific Publishing Co Pte. Ltd.

23

https://doi.org/10.1029/2001JD900254
https://doi.org/10.1029/2001JD900254
http://gmao.gsfc.nasa.gov/pubs/office_notes
http://gmao.gsfc.nasa.gov/pubs/office_notes


2 Appendix

2.1 Table of variables and symbols

A averaging kernel matrix
α angular resolution
β azimuth angle
B blackbody radiance
BW spectral bandwidth
χ convergence criterion
c speed of light, cost function
CED Cloud particle Effective Diameter
COD Cloud Optical Depth
CTP Cloud Top Pressure
CWP Cloud Water Path
d degree of freedom
ε emissivity
ε noise, error
φ longitude
E irradiance
F flux
f focal length
F function
γ a priori weight
G gravitational constant
g gain
H height
h Planck’s constant
I radiance
IC Information Content
IWC Ice Water Content
IWP Ice Water Path
j counter
k Boltzmann’s constant, unknown
K Jacobian
λ wavelength, Marquardt-Levenberg parameter
l distance
L radiance
LTS Lower Tropospheric Stability
LWC Liquid Water Content
LWP Liquid Water Path
M counter, mass
m number of along-track frames
M matrix
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N counter
n channel
N normal distribution
ν frequency
NEdT Noise-Equivalent delta Temperature
o offset
Ω solid angle
p pressure
P probability
PWV Precipitable Water Vapor
Q water vapor
ρ reflection coefficient
R radius, resistance, cost-function change
< response function
℘ responsivity
σB Stefan-Boltzmann constant
S signal level in digitized counts
S covariance
SI Segmentation Index
SNR Signal-to-Noise Ratio
SRF Spectral Response Function
θ latitude, potential temperature, polar coordinate angle
τ transmission, optical depth
T temperature
TR Training Radiances
TREM TRaining Eigenvector Matrices
t time
φ polar coordinate angle
V voltage
v velocity
x, y, z position coordinates
z convergence, standard deviation of scaled differences
x state vector
X focal plane position
y measurement vector
Y focal plane position
ζ incidence angle

Table 2.1: Table of variables and symbols.
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2.2 Abbreviations and acronyms

ADM Angular Distribution Model
AIRS Atmospheric Infrared Sounder
ATBD Algorithm Theoretical Basis Document
CERES Clouds and the Earth’s Radiant Energy System
DEM Digital Elevation Model
DOF Degree of Freedom
ECI Earth-Centered Inertial
ECMWF European Centre for Medium-Range Weather Forecasts
EOF Empirical Orthogonal Function
FIR Far-InfraRed
FOV Field Of View
FPA Focal Plane Array
FWHM Full Width at Half Maximum
GEOS-IT Goddard Earth Observing System for Instrument Teams
GMAO Global Modelling and Assimilation Office
IFOV Instantaneous Field Of View
IFS Integrated Forecasting System
LW Longwave
MIR Mid-InfraRed
NASA National Aeronautics and Space Administration
NEP Noise Equivalent Power
NEdR Noise Equivalent delta spectral Radiance
OE Optimal Estimation
OLR Outgoing Longwave Radiation
PCRTM Principal Component-based Radiative Transfer Model
PREFIRE Polar Radiant Energy in the Far-InfraRed Experiment
ROIC Read-Out Integrated Circuit
RMSE Root Mean Square Error
SDPS Science Data Processing System
SSF Single Scanner Footprint
SRF Spectral Response Function
TCWV Total Column Water Vapor
TIRS (TIRS-PREFIRE) Thermal InfraRed Spectrometer
TIRS1 Thermal InfraRed Spectrometer on PREFIRE-SAT1
TIRS2 Thermal InfraRed Spectrometer on PREFIRE-SAT2
TOA Top of Atmosphere
UTC Coordinated Universal Time
VZA Viewing Zenith Angle
WV Wavelength

Table 2.2: Abbreviations and acronyms.
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2.3 Figure listing with links

Table 2.3: List of Figures in this ATBD.

Table of Contents
0.1 PREFIRE algorithm connectivity and flow

Atmospheric Retrieval Algorithm
1.1 TIRS SRFs grouped by filter
1.2 Atmospheric pressure weighting functions
1.3 2B-ATM algorithm flowchart
1.4 A priori T correlation and variance
1.5 Reanalysis regions
1.6 DFS joint histograms
1.7 Temperature retrieval metrics
1.8 Water vapor retrieval metrics
1.9 Antarctic ground stations
1.10 Arctic ground stations
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