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Figure 0.1: PREFIRE algorithm connectivity and flow.
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1 Level-2 Cloud Mask

%titlePolar Radiant Energy in the Far-Infrared Experiment (PREFIRE) Algo-
rithm Theoretical Basis Document (ATBD) for the 2B-MSK data product

1.1 Introduction

The PREFIRE Level-2 algorithm suite requires that every Thermal InfraRed
Spectrometer (TIRS, or TIRS-PREFIRE) scene be identified as either clear
or cloudy. This determination is made through a cloud masking algorithm
designed for TIRS. Not only should this algorithm work globally, but it should
perform seamlessly in high latitudes where geophysical conditions make cloud
detection especially challenging. Toward this end, the PREFIRE algorithm
team developed a cloud mask based on a machine learning, neural network
(NN) methodology (ML-MSK) that is described in Bertossa et al. (2023).

1.2 PREFIRE mission requirements

The PREFIRE mission has clearly defined requirements for the 2B-MSK prod-
uct. (1) The cloud mask is required to detect 80-90% of clear-sky occurrences.
The primary usage of the cloud mask is to identify clear scenes with high con-
fidence such that other downstream PREFIRE algorithms can operate within
clear-sky conditions to meet their own requirements. (2) The aforementioned
requirement applies to clear-sky scenes with spatial scales of 15-50 km and larger
extents. At these scales, clear-sky is mostly resolved by the nominal TIRS spa-
tial footprint size. Clear-sky scenes with scales smaller than 15 km are smaller
than the TIRS spatial footprint size and have no mission requirement for detec-
tion.
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Figure 1.1: Channels used for ML-MSK NNs.

1.3 ML-MSK

This section outlines the design and training procedure for the machine learning-
based cloud mask. The overall methodology closely follows the approach de-
scribed in Bertossa et al. (2023), with some modifications to account for the
specific characteristics of TIRS data found after launch. At its core, this ap-
proach exploits the ability of neural networks to model nonlinear relationships
between inputs (in this case, multispectral radiance data) and expected outputs
(cloud presence).

Training and evaluation of the cloud mask are performed using co-located
VIIRS (Visible Infrared Imaging Radiometer Suite) cloud mask scenes, which
provide a high-quality reference due to their use of both visible- and thermal-
wavelength channels. ‘Co-locations’ are instances in which both instruments
pass over the same location within at least a 60-minute window of one another.
Because each TIRS footprint spans multiple VIIRS pixels, a thresholding strat-
egy is applied: a TIRS footprint is labeled as ”cloudy” only if at least 50% of
the overlapping VIIRS pixels are classified as cloudy.

Only a selected subset of TIRS channels are used as NN inputs (see 1.1).
This subset is determined by 1) the 1B-RAD detector bitflags mask and
2) empirical testing designed to remove channels with especially large striping.
This restriction helps mitigate noisy cloud mask fields caused by striping or noise
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in the radiance fields. In addition to TIRS radiances, the neural networks also
incorporate auxiliary meteorological variables from the PREFIRE AUX-MET
data product — specifically, skin temperature and total column water vapor.
These variables provide essential context for interpreting the thermal signal and
enhance the NN’s ability to distinguish clouds from surface conditions within
different latitude regimes.

The machine learning cloud mask is trained using approximately 200 gran-
ules drawn from the first ten days of July 2024 and January 2025. These dates
were selected to capture the extremes of polar conditions observed during the
initial year of PREFIRE operations. Only scenes poleward of 60 degrees latitude
are included in the training set. During polar night, the VIIRS cloud mask relies
exclusively on thermal channels; accordingly, the thermal-only VIIRS mask is
used as the reference (”truth”) in those cases. Although this may result in a less
reliable truth label, omitting polar night scenes during training has been found
to significantly degrade model performance under those conditions. Therefore,
their inclusion is essential. Future versions may adopt the use of more sensors
to help compensate for the limited performance of VIIRS in the polar night,
and/or a more targeted sampling strategy to better capture a wider range of
meteorological variability.

The neural network is trained by minimizing a weighted binary cross-entropy
loss function, defined as:

Loss = − 1

|Y∗|
∑[

(1− β)Y∗ log10(Ŷ) + β(1−Y∗)(log10(1− Ŷ))
]

(1.1)

where Y∗ is a binary set representing ‘truth’. Clear is defined to be the null
condition (0) and cloudy the alternate condition (1). Ŷ is the corresponding set

of predicted probabilities by the NN for the cloudy class. Finally, β =
∑

Y∗

|Y∗| ,

adjusts for imbalances between the number of cloudy versus clear scenes in the
training set. For each individual prediction, the first term in Eq. 1.1 is equal to
0 if the scene is clear and the second term is equal to 0 if the scene is cloudy.
This loss function designates that, statistically, the detection of clear and cloudy
scenes should have equal effect on the overall model skill.

The final cloud mask skill is found to be not highly sensitive to the specific
NN architecture used. However, for completeness, the specific structure em-
ployed is detailed in Table 1.1. The model includes batch normalization and
dropout layers, which are standard techniques used to improve generalization
and reduce overfitting during training.

To account for differences between sensors, a total of 16 unique NNs are
trained — one for each of the eight sensors onboard the two TIRS instruments.
All NNs are trained using the same set of granules, and the model architectures
are identical except for the input layer, which is customized to accept only
the valid channels available for that specific sensor configuration. Each NN is
only used to evaluate its corresponding sensors’ scenes, and their outputs are
combined to produce the final cloud mask product.
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Table 1.1: The neural network structure for the ML cloud mask. Layer levels
may be used as a reference for how inputs progress through the NN. Layer types
and output shape are listed for each layer. The input shape takes the form of
nchannels, referring to the number of ‘valid’ channels for that particular cross-
track scene, with two additional inputs from the AUX-MET data products.

Baseline NN Structure
Layer Level Type Output Shape

1 Input (None, nchannel+2)
BatchNormalization (None, 52)

2 Dense (None, 256)
Dropout(0.2) (None, 256)

3 Dense (None, 256)
Dropout(0.3) (None, 256)

4 Dense (None, 2)
(softmax activation)

Because NN training is inherently stochastic, each of the 16 networks is in-
dependently retrained five times, starting from different random initializations.
The version with the lowest loss on an independent validation set (i.e., granules
not seen during training) is selected for operational use. This approach ensures
robust performance and minimizes the impact of training variability.

1.4 Using ML-MSK

The ability to detect clouds is highly dependent on cloud type and the atmo-
spheric and surface variability within a given scene. The primary purpose of
2B-MSK is to confidently identify 80-90% of clear-sky scenes for scales of 15-
50 km in the Arctic; thus the cloud detection has been optimized for this need.
To ensure clear-sky detection with a high level of confidence, it is recommended
that one uses 2B-MSK’s measure of confidence as needed.

Explicitly, a continuous estimate of cloud probability (0-1; cldmask probability)
is offered. Probabilities closer to one indicate that the neural network model
is more confident that a cloud is present, and probabilities nearer to zero in-
dicate higher confidence that the given TIRS scene is clear. For convenience,
these probabilities are also discretized into five integer values corresponding to
distinct probability bins:

• 0 [clear] if 0.0 ≤ cldmask probability < 0.2

• 1 [likely clear] if 0.2 ≤ cldmask probability < 0.4

• 2 [uncertain] if 0.4 ≤ cldmask probability < 0.6

• 3 [likely cloud] if 0.6 ≤ cldmask probability < 0.8
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Figure 1.2: Confusion matrix of VIIRS cloud mask labels versus predicted labels
from PREFIRE scenes for three different cloud probability thresholds. Left:
<0.4 (cloud mask = 0 or 1) or >0.6 (cloud mask = 3 or 4), middle: <0.2
(cloud mask = 0) or >0.8 (cloud mask = 4), right: <0.1 or >0.9 (must be
screened by users with the cldmask probability field)

• 4 [cloud] if 0.8 ≤ cldmask probability ≤ 1.0

Users may choose to apply this discretized cloud mask directly — e.g., fil-
tering scenes using only the most confident classes (0 or 4) — or define custom
thresholds using the continuous cloud probability field to suit their specific ap-
plication needs.

1.5 Initial Validation

Initial validation of ML-MSK has been performed against the VIIRS cloud mask
and CrIMSS (Crosstrack Infrared and advanced technology Microwave Sounder
Suite) effective cloud fraction for orbital segments that are not used in the
formation of the training data sets. As with the identification of ideal training
set radiances, the most optimal comparisons are limited to small time differences
(less than 60 minutes) between PREFIRE and VIIRS + CrIMSS data.

Figure 1.2 presents initial validation results for ML-MSK against the VIIRS
cloud mask, using several granules from July 2024 and January 2025 that were
excluded from the training set. The comparisons are displayed as confusion
matrices, with true positives (top left), true negatives (bottom right), false
positives (top right), and false negatives (bottom left) indicated. Each matrix
reports both absolute counts and prediction-relative frequencies.

Even for lower-confidence classes (left), the average classification accuracy
for both clear and cloudy scenes exceeds 87%. As expected, higher confidence
thresholds (right) yield improved agreement with the VIIRS reference mask, at
the cost of excluding a greater number of ambiguous scenes from the labeled
output.
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2 Appendix

2.1 Table of variables and symbols

A averaging kernel matrix
α angular resolution
β azimuth angle
B blackbody radiance
BW spectral bandwidth
χ convergence criterion
c speed of light, cost function
CED Cloud particle Effective Diameter
COD Cloud Optical Depth
CTP Cloud Top Pressure
CWP Cloud Water Path
d degree of freedom
ε emissivity
ε noise, error
φ longitude
E irradiance
F flux
f focal length
F function
γ a priori weight
G gravitational constant
g gain
H height
h Planck’s constant
I radiance
IC Information Content
IWC Ice Water Content
IWP Ice Water Path
j counter
k Boltzmann’s constant, unknown
K Jacobian
λ wavelength, Marquardt-Levenberg parameter
l distance
L radiance
LTS Lower Tropospheric Stability
LWC Liquid Water Content
LWP Liquid Water Path
M counter, mass
m number of along-track frames
M matrix
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N counter
n channel
N normal distribution
ν frequency
NEdT Noise-Equivalent delta Temperature
o offset
Ω solid angle
p pressure
P probability
PWV Precipitable Water Vapor
Q water vapor
ρ reflection coefficient
R radius, resistance, cost-function change
< response function
℘ responsivity
σB Stefan-Boltzmann constant
S signal level in digitized counts
S covariance
SI Segmentation Index
SNR Signal-to-Noise Ratio
SRF Spectral Response Function
θ latitude, potential temperature, polar coordinate angle
τ transmission, optical depth
T temperature
TR Training Radiances
TREM TRaining Eigenvector Matrices
t time
φ polar coordinate angle
V voltage
v velocity
x, y, z position coordinates
z convergence, standard deviation of scaled differences
x state vector
X focal plane position
y measurement vector
Y focal plane position
ζ incidence angle

Table 2.1: Table of variables and symbols.
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2.2 Abbreviations and acronyms

ADM Angular Distribution Model
AIRS Atmospheric Infrared Sounder
ATBD Algorithm Theoretical Basis Document
CERES Clouds and the Earth’s Radiant Energy System
DEM Digital Elevation Model
DOF Degree of Freedom
ECI Earth-Centered Inertial
ECMWF European Centre for Medium-Range Weather Forecasts
EOF Empirical Orthogonal Function
FIR Far-InfraRed
FOV Field Of View
FPA Focal Plane Array
FWHM Full Width at Half Maximum
GEOS-IT Goddard Earth Observing System for Instrument Teams
GMAO Global Modelling and Assimilation Office
IFOV Instantaneous Field Of View
IFS Integrated Forecasting System
LW Longwave
MIR Mid-InfraRed
NASA National Aeronautics and Space Administration
NEP Noise Equivalent Power
NEdR Noise Equivalent delta spectral Radiance
OE Optimal Estimation
OLR Outgoing Longwave Radiation
PCRTM Principal Component-based Radiative Transfer Model
PREFIRE Polar Radiant Energy in the Far-InfraRed Experiment
ROIC Read-Out Integrated Circuit
RMSE Root Mean Square Error
SDPS Science Data Processing System
SSF Single Scanner Footprint
SRF Spectral Response Function
TCWV Total Column Water Vapor
TIRS (TIRS-PREFIRE) Thermal InfraRed Spectrometer
TIRS1 Thermal InfraRed Spectrometer on PREFIRE-SAT1
TIRS2 Thermal InfraRed Spectrometer on PREFIRE-SAT2
TOA Top of Atmosphere
UTC Coordinated Universal Time
VZA Viewing Zenith Angle
WV Wavelength

Table 2.2: Abbreviations and acronyms.
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2.3 Figure listing with links

Table 2.3: List of Figures in this ATBD.

Table of Contents
0.1 PREFIRE algorithm connectivity and flow

Cloud Mask Algorithm
1.1 Channels used for ML-MSK NNs
1.2 Cloud probability confusion matrices
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