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Figure 0.1: PREFIRE algorithm connectivity and flow.
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1 Level-2 Spectral Emissivity

1.1 Introduction

This algorithm theoretical basis document (ATBD) describes the algorithm for
the retrieval of surface spectral emissivity from top-of-atmosphere (TOA) spec-
tral radiance. Specifically, this document describes the data, forward modeling,
algorithm details and validation results of the retrieval studies based on an
optimal estimation (OE) algorithm.

1.2 Data and forward modeling

1.2.1 ERA5 reanalysis data

ERA5 (ECMWF Reanalysis version 5) 6-hourly data (Hersbach et al. 2020)
are used here to simulate clear-sky PREFIRE radiances at nadir view. Surface
temperatures, atmospheric temperature and humidity profiles for four months
(January, April, July and October 2005) in the Arctic from the ERA5 dataset
will be used for the validation of the surface spectral emissivity retrieval algo-
rithm.
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1.2.2 Band-by-band surface emissivity dataset

A band-by-band surface emissivity dataset developed by Huang et al. (2016) is
used in the study. This monthly-dependent global surface emissivity database is
derived from first principles and observations, covering both mid-IR and far-IR
at a 0.5o× 0.5o spatial resolution.

1.2.3 PCRTM forward modeling

Forward simulations of TOA spectral radiance are performed using the Principal
Component Radiative Transfer Model (PCRTM) (Liu et al. 2006) because it
is both computationally affordable and accurate. In this study, the PCRTM is
employed to generate the synthetic radiances and Jacobians on the PREFIRE
spectra from 5 to 54µm at 0.84µm resolution. A more detailed description of
the PCRTM can be found in the PREFIRE Spectral Flux (2B-FLX) ATBD.
This model is used in the OE algorithm as the forward model.

1.3 OE Algorithm

Figure 1.1 illustrates the flow of the OE method surface emissivity algorithm.

1.3.1 PREFIRE channel selection

In this study, 14 PREFIRE channels in the mid-IR and far-IR are selected for the
retrieval of surface spectral emissivity (Table 1.1). For monthly means of ERA5
6-hourly profiles in the Arctic Ocean, the transmittances in July are smaller
than those in January, mostly due to the increase of water vapor abundance.

1.3.2 Optimal estimation retrieval

The optimal estimation method is a physical retrieval algorithm based on Bayes’
theorem

(P (x | y) =
(P (y | x)P (x))

P (y)
(1.1)

P (x|y) denotes the probability of a specific state x given the observation y and
is known as the a posteriori probability density function (PDF). The state being
optimized includes the geophysical variables

{Ts, εn} ∈ x,y (1.2)

The optimal estimation retrieval method seeks the x which maximizes this a
posteriori PDF. P (x|y) can be calculated using the likelihood of observations
given a specific state P (y|x) and the a priori probability distribution of the state
P (x). P (y) functions as a normalization term and is not required in practice.

Observations (y) at TOA contain both radiances and measurement noise.
The PREFIRE observations are simulated by adding synthetic measurement
noise ε to the clear-sky spectral radiances calculated by the PCRTM.

y = F(x) + ε (1.3)
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n λn Wavenumber edges Transmittance Transmittance
(µm) νn (cm−1) in January in July

10 8.44 [1246.88, 1128.67] 0.85 0.73
12 10.13 [1030.93, 947.87] 0.80 0.73
13 10.97 [947.87, 877.96] 0.96 0.87
14 11.82 [877.96, 816.99] 0.96 0.83
15 12.66 [816.99, 764.53] 0.83 0.66
16 13.50 [764.53, 718.39] 0.48 0.35
20 16.88 [607.90, 578.03] 0.23 0.06
21 17.72 [578.03, 551.27] 0.45 0.10
22 18.57 [551.27, 526.59] 0.47 0.09
23 19.6 [526.59, 504.29] 0.39 0.05
24 20.25 [504.29, 483.79] 0.34 0.03
25 21.10 [483.79, 464.68] 0.28 0.02
26 21.94 [464.68, 447.23] 0.20 0.01
27 22.78 [447.23, 431.03] 0.16 0.00

Table 1.1: PREFIRE channels selected for the surface spectral emissivity re-
trieval. The atmospheric transmittances are calculated using MODTRAN5 with
monthly and area mean profiles from ERA5 in January and July 2005 over the
Arctic Ocean (73-77oN, 0-360oE).

The Gaussian distribution is widely used to model the PDFs due to its gener-
ality and convenience (Rodgers 2000). In this study, the likelihood P (y|x) and
the a priori PDF P (x) are assumed to be Gaussian. As a consequence, the a
posteriori PDF P (x|y) also follows a Gaussian distribution.

A priori : x ≈ N (xa,Sa)
Likelihood: y|x ≈ N (F(x), Sε)
A posteriori : x|y ≈ N (x̂, Ŝ)

xa and Sa are the a priori mean and covariance matrix of the state x, which
represents the knowledge of state variables before observations. The observation
y is composed of signals from the PCRTM forward model F , given a specific
state x and the noise quantified by the measurement error covariance matrix
Sε.

A priori knowledge of the state (x) can be obtained from climatological
data, laboratory measurements or empirical analysis. In this study, the a priori
mean xa values of surface spectral emissivity are set to 0.95 out of simplicity.
The initial guess used in the iteration x0 is set equal to the a priori mean
xa. The a priori covariance matrix Sa is derived from a recently developed
surface emissivity database covering the far-IR spectrum (Huang et al. 2016).
This global surface emissivity dataset is computed based on observations and
first principles for each month at a 0.5o×0.5o spatial resolution. Monthly surface
spectral emissivity at nadir view is first converted to the PREFIRE spectral grid.
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For each PREFIRE channel, find the dataset spectral grids which fall within
the channel range. Surface emissivity on the PREFIRE channel is computed as
the mean of observationally-based surface emissivity at corresponding spectral
grids.

A surface spectral emissivity dataset in the Arctic (60-90oN, 0-360oE) for
all 12 calendar months is used to calculate the surface emissivity covariance
matrix. The a priori covariance matrix Sa is generated by first multiplying the
surface emissivity covariance matrix by 4, and then decreasing the correlation
coefficient between different channels by half. This a priori constraint is neither
too strict (so that signals from observations can be captured), nor too loose
(so that surface emissivity estimates still fall within a reasonable range). The
measurement error covariance Sε is a diagonal matrix of which the main diagonal
is composed of the square of the PREFIRE noise equivalent spectral radiance.

x̂ is the optimal estimate of the state, of which the uncertainty can be
characterized by the a posteriori covariance matrix Ŝ. Theoretical formulae of
x̂ and Ŝ can be conveniently derived based on Gaussian-distributed PDFs:

x̂ = (KTSε
−1K + Sa

−1)−1(KTSε
−1y + Sa

−1xa) (1.4)

Ŝ = (KTSε
−1K + Sa

−1)−1 (1.5)

The optimal estimate x̂ can be viewed as a sum of the a priori mean and
observed signal weighted by the inverse of the covariance matrices. The Jacobian
matrix K = δF (x)/δx describes the first derivative of the forward model with
respect to a state variable.

For moderately linear cases, the Jacobian K can be used to invert observa-
tions in the measurement space back to the state space. Due to the dependence
of Jacobian K on the state x, it is necessary to iteratively solve the inverse
problem and update the Jacobian at each iteration step. Therefore, the opti-
mal estimation algorithm uses the iterative Gauss-Newton method to find the
root of ∇x = −ln(P (x|y). The retrieval process is governed by the following
iteration steps:

xi+1 = xa + (γ−1
a + Ki

TSε
−1Ki)

−1Ki
TSε

−1[y −F(xi) + Ki(xi − xa)] (1.6)

Si = (γ−1
a + [Ki]

TSε
−1Ki)

−1(γ2Sa
−1 + Ki

TSε
−1Ki)(γ

−1
a + Ki

TSε
−1Ki)

−1

(1.7)
Different from the classic formulations in Rodgers (2000), a tuning parameter

γ is introduced to manually adjust the relative weight of a priori constraints
and observed information (Carissimo et al. 2005, Zhou et al. 2007, Masiello et
al. 2012, Turner et al. 2014). γ >1 means more information from the a priori
than the observation. Following the work of Turner et al. (2014), a sequence
of γ values [1000, 300, 100, 30, 10, 3, 1, 1, 1 . . .] has been used in this study.
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Figure 1.1: Flowchart of the optimal estimation algorithm for surface spectral
emissivity retrieval on the PREFIRE channels.

This modification is meant to stabilize the retrieval process by gradually adding
information from the observation step by step. The iteration will stop when
γ=1 and the convergence criterion

((xi − xi+1)T [Si]
−1(xi − xi+1) <

length(x)

10
(1.8)

is met. This convergence criterion ensures that the change of x between two
steps is smaller than the retrieval uncertainty by at least an order of magnitude.

1.3.3 Surface emissivity mapping

The mapping process transforms surface spectral emissivity on the PREFIRE
channels to the PCRTM (uses PCRTM sensor ID = 2) input spectrum composed
of 740 grid cells from 50.38 to 2759.89 cm−1. For each PCRTM spectral grid cell,
if its wavenumber falls in any PREFIRE channel, the surface emissivity at this
PCRTM spectral grid will be set equal to the value at that PREFIRE channel. If
its wavenumber falls beyond the PREFIRE spectral range, the surface emissivity
at this PCRTM spectral grid cell will be set equal to the value on the nearest
PREFIRE channel — in other words, at n = 10 when wavenumber is less than
424.24 cm−1 or at n = 27 when wavenumber is greater than 1228.07 cm−1. If its
wavenumber does not fall in any selected PREFIRE channel but is still within
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the PREFIRE spectral range, the surface emissivity at this PCRTM spectral
grid will be set equal to the value at the nearest PREFIRE channel, or the
average of two adjacent channels if the PCRTM wavenumber happens to fall in
between two PREFIRE channels.

1.3.4 Conversion of PCRTM output back to the PREFIRE channels

The radiances and Jacobians generated by the PCRTM are for 5421 spectral
grid cells from 50 to 2760 cm−1 at 0.5 cm−1 spectral resolution. This output
spectrum differs from that of PREFIRE, which means the radiances and Ja-
cobians need to be converted back to PREFIRE channels. To solve this prob-
lem, the spectral response function (SRF) and relevant spectrum information
(v0.10.4 360 2021-03-28) are used. The SRF (size: 6951 × 63) is discretized in
the spectral dimension into 6951 grid cells (0.43 - 60.00µm at 0.0086µm reso-
lution) for each of the PREFIRE channels. The PCRTM output Y0 (size: 5421
× 1) is first interpolated onto the SRF spectral grid to get Y1 (size: 6951 × 1).
For each selected PREFIRE channel, find the corresponding SRF column (size:
6951 × 1) and select SRF spectral grid cells which fall within the PREFIRE
channel spectral range. If (1) the sum of SRF column is positive and (2) the
sum of Y1on of the selected spectral grid cell is an unmasked value, Y1 will then
be convolved using the SRF column to derive Y2 on this PREFIRE channel.

Y2 =

∑
Y1 · SRFcolumn ·∆λ∑
SRFcolumn ·∆λ

,∆λ = 0.0086µm (1.9)

Otherwise, the final output on this PREFIRE channel will be set as masked.

1.3.5 Information content analysis

The information content analysis aims to evaluate the information contributed
by the true state, given noisy observations. In order to gain insight before
the actual retrievals are conducted, monthly mean profiles in three typical polar
regions [Arctic Ocean (73-77oN, 0-360oE), Greenland (70-80oN, 310-340oE), and
Antarctic Plateau (75-85oS, 60-90oE)] from ERA5 6-hourly reanalysis data in
January and July 2005 are used for the information content analysis.

Averaging kernel : The averaging kernel matrix, A, (Backus et al. 1970)
quantitatively evaluates the sensitivity of retrieval results to the true state.

A =
δx̂

δx
= SaK

T (KSaK
T + Sε)

−1K (1.10)

The columns of A describe the response of retrieval estimates to the change of
a specific true state variable. The rows of this averaging kernel matrix represent
the sensitivity of a specific retrieval estimate to all state variables. The diagonal
elements denote the sensitivity of a specific retrieval estimate to its own true
value. This self-sensitivity is expected to be 1 in the ideal scenario.

Averaging kernels of surface emissivity in three typical polar regions (Arctic
Ocean, Greenland, and Antarctic Plateau) are shown in Figure 1.2 for January
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Figure 1.2: Averaging kernels of surface spectral emissivity in three typical po-
lar regions: Arctic Ocean (73-77oN, 0-360oE), Greenland (70-80oN, 310-340oE),
and Antarctic Plateau (75-85oS, 60-90oE). Calculated using ERA5 6-hourly re-
analysis data for January and July 2005.
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Arctic Ocean Greenland Antarctic Plateau
JAN JUL JAN JUL JAN JUL

d(T, q, Ts, εn) 9.6 8.4 10.9 8.6 11.8 11.8
d(εn) 5.1 4.0 7.0 4.8 9.5 9.2
d(εnMIR

) 3.0 3.6 3.0 3.9 3.7 2.7
d(εnFIR

) 2.1 0.4 4.0 1.0 5.8 6.5
d(TCWV (cm)) 0.30 1.27 0.12 0.59 0.07 0.02

Table 1.2: Degree of freedom, d, for signal and total column water vapor in three
typical polar regions: Arctic Ocean (73-77oN, 0-360oE), Greenland (70-80oN,
310-340oE), and Antarctic Plateau (75-85oS, 60-90oE). Calculated using ERA5
6-hourly reanalysis data for January and July 2005.

and July in 2005. Each curve represents a row in the averaging kernel matrix.
The a priori covariance matrix Sa is generated by first multiplying the emissivity
covariance matrix by 4, and then decreasing the correlation coefficient between
different channels by half. For the Arctic Ocean and Greenland, the peak values
of MIR channels are larger than 0.5 in January and July. In contrast, the peak
averaging kernel values of FIR channels decrease in July mostly due to increased
water vapor absorption.

Degree of freedom for signal : The degree of freedom for signal d refers to the
number of independent pieces of information concerning the true state that can
be determined from a measurement. This value denotes how informative the
observation can be, given the measurement noise and the dependence among
state variables. Degree of freedom for signal equals the trace of the averaging
kernel matrix, in other words, the sum of self-sensitivity.

d = tr(SaK
T (KSaK

T + Sε)
−1K) = tr(A) (1.11)

The d values for signals shown in Table 1.2 are based on the 58 valid PRE-
FIRE longwave channels. The a priori covariance matrix Sa is generated by
first multiplying the emissivity covariance matrix by 4, and then decreasing the
correlation coefficient between different channels by half. The DOF for surface
emissivity in the MIR varies around 3 to 4, despite the change of total column
water vapor. Meanwhile, the d for signal surface emissivity in FIR decreases
when the total column water vapor increases. This implies that surface emis-
sivity retrieval in the FIR can be significantly influenced by the water vapor
abundance.

1.3.6 OE Validation

Synthetic clear-sky PREFIRE radiances are used to validate the surface emis-
sivity retrieval algorithm. There are 960 profiles including ERA5 6-hourly tem-
perature and humidity, surface temperatures and pressures randomly chosen
for January, April, July, October 2005 – 240 profiles for each month. Surface
emissivity spectra from the surface spectral emissivity database (Huang et al.,
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2016) are randomized by ±0.05, and adjusted to 0.98 if the emissivity values
exceed 1. The atmospheric profiles and surface properties are then fed into the
PCRTM V3.4 to generate the synthetic clear-sky PREFIRE radiances without
noise. The synthetic measurement noises are randomly derived from the normal
distribution with zero mean and one standard deviation characterized by the
PREFIRE noise equivalent spectral radiances. This random noise is then added
to the radiances to generate the synthetic clear-sky PREFIRE radiances with
noise. Both synthetic radiances without and with noise are used to retrieve
surface spectral emissivity. Differences between the retrieved surface emissivity
and the true surface emissivity values, namely the input to PCRTM, are investi-
gated. Retrieval results using synthetic radiances without noise can validate the
performance of the optimal estimation retrieval algorithm. On the other hand,
results using synthetic radiances with noise can examine the accuracy level of
surface emissivity retrievals in practice given the PREFIRE instrument noise.

Figure 1.3 shows the mean and root mean square error (RMSE) of absolute
differences between the surface emissivity retrievals and the true values, using
clear-sky synthetic PREFIRE radiances without noise. All of the 960 cases in
four months converged within 10 iterations. The optimal estimation retrieval
algorithm performs steadily on the MIR channels, with the bias mean plus
RMSE falling within the range [-0.02, 0.01]. For channels in the FIR, the mean
of the absolute differences vary within ±0.01. Meanwhile, the corresponding
RMSEs are between 0.02 and 0.03, larger than those in the MIR. This increase
of RMSEs is mostly attributable to cases in July and October.

Figure 1.4 shows the mean and root mean square error (RMSE) of absolute
differences between the surface emissivity retrievals and the true values, using
clear-sky synthetic PREFIRE radiances with added instrument noise. Again, all
of the 960 cases in four months converged within 10 iterations. The mean and
RMSE of absolute differences show no significant difference compared to those
in Figure ??. With the currently expected PREFIRE instrument noise, the
averaged surface emissivity retrieval will not be noticeably affected compared
to the idealized retrieval without any noise.

1.3.7 An update to the OE algorithm

The algorithm can be applied to newer PREFIRE SRF data. We modified
the PREFIRE SRF from version 10 (v0.10.4 360 2021-03-28) to version 12
(v12 2023-08-09). Version 12 has different SRFs for each of the two PRE-
FIRE Thermal InfraRed Spectrometer (TIRS, or TIRS-PREFIRE) instruments.
Each instrument has 8 sensors/scenes. For the same instrument, all 8 sen-
sors/scenes have the same SRF, but have different Noise-Equivalent Delta Radi-
ance (NEdR), see Figure ??. We only do surface emissivity retrieval for channels
with low NEdR. Table 1.3 lists the channels used for surface emissivity retrievals
for each sensor/scene of TIRS1 and TIRS2. Then the results are expanded to
all 58 PREFIRE longwave channels using interpolation.

As validation, the surface emissivity retrieval algorithm is applied to syn-
thetic PREFIRE radiances. Then the retrieved surface emissivity is compared
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Figure 1.3: Mean (denoted by solid point markers) and Root Mean Square
Error (denoted by bars) of absolute differences between the surface emissivity
retrievals and the truth. The surface emissivity retrievals are derived from clear-
sky synthetic PREFIRE radiances without noise. Panel (a) is based on retrieval
results of all the converged cases. Subpanels (b), (c), (d), and (e) characterize
retrieval results in January, April, July and October 2005 respectively.
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Figure 1.4: Similar to Figure 1.3 but for surface emissivity retrievals derived
from clear-sky synthetic PREFIRE radiances with added instrument noise.
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Number of Channels used for retrieving surface emissivity
channels used

TIRS1 Sensor 1 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 2 13 10 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 3 9 10 14 15 16 23 24 25 26 27
Sensor 4 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 5 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 6 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 7 10 10 12 13 14 15 16 20 22 26 27
Sensor 8 12 10 12 13 14 15 16 20 21 23 24 25 26

TIRS2 Sensor 1 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 2 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 3 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 4 12 11 12 14 15 19 20 21 22 23 24 25 26
Sensor 5 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 6 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 7 11 13 14 15 19 20 21 22 23 24 25 26
Sensor 8 13 11 12 13 14 15 19 20 21 22 23 24 25 26

Table 1.3: Channels used for deriving surface emissivity for each sensor/scene
of TIRS1 and TIRS2.

with true emissivity used for simulating synthetic PREFIRE radiances. The
synthetic PREFIRE radiance is simulated from GEOS-FPIT (Goddard Earth
Observing System Forward Processing for Instrument Teams) data for four
months of 2021 (three days per month). Figures 1.5 and 1.6 show the mean
and standard deviation of the difference between the retrieved and true emis-
sivity. Generally, the mean difference and standard deviation are larger for
detected clear-sky cases than for truly clear-sky cases. Table 1.4 summarizes
the difference between retrieved and true surface emissivities for channels used
in the retrieval. Overall, the median differences are all negative (about -0.01)
and the RMSEs are about 0.015-0.020. There are very small differences between
TIRS1 and TIRS2.
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Sensor / TIRS1 Sim Performance TIRS1 TIRS2 Sim Performance TIRS2
Scene Error Error

Delta Delta
5th 95th median 5th 95th median
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Figure 1.5: Mean and standard deviation of the difference between retrieved
and true emissivity at PREFIRE channels for each sensor/scene of TIRS1 over
the polar regions. The black line is for true clear-sky cases. The red line is
for clear-sky cases as classified by the cloud mask algorithm. Dots are for the
channels used for retrieval. Ticked vertical lines show the standard deviation of
the difference.
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2 Appendix

2.1 Table of variables and symbols

A averaging kernel matrix
α angular resolution
β azimuth angle
B blackbody radiance
BW spectral bandwidth
χ convergence criterion
c speed of light, cost function
CED Cloud particle Effective Diameter
COD Cloud Optical Depth
CTP Cloud Top Pressure
CWP Cloud Water Path
d degree of freedom
ε emissivity
ε noise, error
φ longitude
E irradiance
F flux
f focal length
F function
γ a priori weight
G gravitational constant
g gain
H height
h Planck’s constant
I radiance
IC Information Content
IWC Ice Water Content
IWP Ice Water Path
j counter
k Boltzmann’s constant, unknown
K Jacobian
λ wavelength, Marquardt-Levenberg parameter
l distance
L radiance
LTS Lower Tropospheric Stability
LWC Liquid Water Content
LWP Liquid Water Path
M counter, mass
m number of along-track frames
M matrix
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N counter
n channel
N normal distribution
ν frequency
NEdT Noise-Equivalent delta Temperature
o offset
Ω solid angle
p pressure
P probability
PWV Precipitable Water Vapor
Q water vapor
ρ reflection coefficient
R radius, resistance, cost-function change
< response function
℘ responsivity
σB Stefan-Boltzmann constant
S signal level in digitized counts
S covariance
SI Segmentation Index
SNR Signal-to-Noise Ratio
SRF Spectral Response Function
θ latitude, potential temperature, polar coordinate angle
τ transmission, optical depth
T temperature
TR Training Radiances
TREM TRaining Eigenvector Matrices
t time
φ polar coordinate angle
V voltage
v velocity
x, y, z position coordinates
z convergence, standard deviation of scaled differences
x state vector
X focal plane position
y measurement vector
Y focal plane position
ζ incidence angle

Table 2.1: Table of variables and symbols.
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2.2 Abbreviations and acronyms

ADM Angular Distribution Model
AIRS Atmospheric Infrared Sounder
ATBD Algorithm Theoretical Basis Document
CERES Clouds and the Earth’s Radiant Energy System
DEM Digital Elevation Model
DOF Degree of Freedom
ECI Earth-Centered Inertial
ECMWF European Centre for Medium-Range Weather Forecasts
EOF Empirical Orthogonal Function
FIR Far-InfraRed
FOV Field Of View
FPA Focal Plane Array
FWHM Full Width at Half Maximum
GEOS-IT Goddard Earth Observing System for Instrument Teams
GMAO Global Modelling and Assimilation Office
IFOV Instantaneous Field Of View
IFS Integrated Forecasting System
LW Longwave
MIR Mid-InfraRed
NASA National Aeronautics and Space Administration
NEP Noise Equivalent Power
NEdR Noise Equivalent delta spectral Radiance
OE Optimal Estimation
OLR Outgoing Longwave Radiation
PCRTM Principal Component-based Radiative Transfer Model
PREFIRE Polar Radiant Energy in the Far-InfraRed Experiment
ROIC Read-Out Integrated Circuit
RMSE Root Mean Square Error
SDPS Science Data Processing System
SSF Single Scanner Footprint
SRF Spectral Response Function
TCWV Total Column Water Vapor
TIRS (TIRS-PREFIRE) Thermal InfraRed Spectrometer
TIRS1 Thermal InfraRed Spectrometer on PREFIRE-SAT1
TIRS2 Thermal InfraRed Spectrometer on PREFIRE-SAT2
TOA Top of Atmosphere
UTC Coordinated Universal Time
VZA Viewing Zenith Angle
WV Wavelength

Table 2.2: Abbreviations and acronyms.
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2.3 Figure listing with links

Table 2.3: List of Figures in this ATBD.

Table of Contents
0.1 PREFIRE algorithm connectivity and flow

Emissivity Algorithm
1.1 OE algorithm flowchart
1.2 OE averaging kernels
1.3 OE error estimates, noise-free
1.4 OE error estimates with instrument noise
1.5 OE truth difference for TIRS1
1.6 OE truth difference for TIRS2
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